Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.11.06.565781

RESUMO

The COVID-19 pandemic has shown the need to develop effective therapeutics in preparedness for further epidemics of virus infections that pose a significant threat to human health. As a natural compound antiviral candidate, we focused on -dystroglycan, a highly glycosylated basement membrane protein that links the extracellular matrix to the intracellular cytoskeleton. Here we show that the N-terminal fragment of -dystroglycan (-DGN), as produced in E. coli in the absence of post-translational modifications, blocks infection of SARS-CoV-2 in cell culture, human primary gut organoids and the lungs of transgenic mice expressing the human receptor angiotensin I-converting enzyme 2 (hACE2). Prophylactic and therapeutic administration of -DGN reduced SARS-CoV-2 lung titres and protected the mice from respiratory symptoms and death. Recombinant -DGN also blocked infection of a wide range of enveloped viruses including the four Dengue virus serotypes, influenza A virus, respiratory syncytial virus, tick-borne encephalitis virus, but not human adenovirus, a non-enveloped virus in vitro. This study establishes soluble recombinant -DGN as a broad-band, natural compound candidate therapeutic against enveloped viruses.


Assuntos
COVID-19
2.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.07.02.547368

RESUMO

The cell entry mechanism of SARS-CoV-2, the causative agent of the COVID-19 pandemic, is not fully understood. Most animal viruses hijack cellular endocytic pathways as an entry route into the cell. Here, we show that in cells that do not express serine proteases such as TMPRSS2, genetic depletion of all dynamin isoforms blocked the uptake and strongly reduced infection with SARS-CoV-2 and its variant Delta. However, increasing the viral loads partially and dose-dependently restored infection via a thus far uncharacterized entry mechanism. Ultrastructural analysis by electron microscopy showed that this dynamin-independent endocytic processes appeared as 150-200 nm non-coated invaginations and was efficiently used by numerous mammalian viruses, including alphaviruses, influenza, vesicular stomatitis, bunya, adeno, vaccinia, and rhinovirus. Both the dynamin-dependent and dynamin-independent infection of SARS-CoV-2 required a functional actin cytoskeleton. In contrast, the alphavirus Semliki Forest virus, which is smaller in diameter, required actin only for the dynamin-independent entry. The presence of TMPRSS2 protease rescued SARS-CoV-2 infection in the absence of dynamins. Collectively, these results indicate that some viruses such as canine parvovirus and SARS-CoV-2 mainly rely on dynamin for endocytosis-dependent infection, while other viruses can efficiently bypass this requirement harnessing an alternative infection entry route dependent on actin.


Assuntos
COVID-19 , Estomatite Vesicular , Transtornos Relacionados ao Uso de Substâncias
3.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.01.20.477115

RESUMO

Endosomal sorting maintains cellular homeostasis by recycling transmembrane proteins and associated proteins and lipids (termed cargoes) from the endosomal network to multiple subcellular destinations, including retrograde traffic to the trans-Golgi network (TGN). Viral and bacterial pathogens subvert retrograde trafficking machinery to facilitate infectivity. Here, we develop a proteomic screen to identify novel retrograde cargo proteins of the Endosomal SNX-BAR Sorting Complex Promoting Exit-1 (ESCPE-1). Using this methodology, we identify Neuropilin-1 (NRP1), a recently characterised host factor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as a cargo directly bound and trafficked by ESCPE-1. ESCPE-1 mediates retrograde trafficking of engineered nanoparticles functionalised with the NRP1-interacting peptide of the SARS-CoV-2 Spike protein. ESCPE-1 sorting of NRP1 may therefore play a role in the intracellular membrane trafficking of NRP1-interacting viruses such as SARS-CoV-2.


Assuntos
Síndrome Respiratória Aguda Grave , Degeneração Retrógrada
4.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.07.30.454063

RESUMO

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has threatened human health and the global economy. Development of additional vaccines and therapeutics is urgently required, but such development with live virus must be conducted with biosafety level 3 confinement. Pseudotyped viruses have been widely adopted for studies of virus entry and pharmaceutical development to overcome this restriction. Here we describe a modified protocol to generate vesicular stomatitis virus (VSV) pseudotyped with SARS-CoV or SARS-CoV-2 Spike protein in high yield. We found that pseudovirions produced with the conventional transient expression system lacked coronavirus Spike protein at their surface as a result of inhibition of parental VSV infection by overexpression of this protein. Establishment of stable cell lines with an optimal expression level of coronavirus Spike protein allowed the efficient production of progeny pseudoviruses decorated with Spike protein. This improved VSV pseudovirus production method should facilitate studies of coronavirus entry and development of antiviral agents.


Assuntos
Infecções por Coronavirus , Síndrome Respiratória Aguda Grave , Estomatite Vesicular
5.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.06.05.134114

RESUMO

SARS-CoV-2 is the causative agent of COVID-19, a coronavirus disease that has infected more than 6.6 million people and caused over 390,000 deaths worldwide1,2. The Spike (S) protein of the virus forms projections on the virion surface responsible for host cell attachment and penetration. This viral glycoprotein is synthesized as a precursor in infected cells and, to be active, must be cleaved to two associated polypeptides: S1 and S2(3,4). For SARS-CoV-2 the cleavage is catalysed by furin, a host cell protease, which cleaves the S protein precursor at a specific sequence motif that generates a polybasic Arg-Arg-Ala-Arg (RRAR) C-terminal sequence on S1. This sequence motif conforms to the C-end rule (CendR), which means that the C-terminal sequence may allow the protein to associate with cell surface neuropilin-1 (NRP1) and neuropilin-2 (NRP2) receptors5. Here we demonstrate using immunoprecipitation, site-specific mutagenesis, structural modelling, and antibody blockade that, in addition to engaging the known receptor ACE2, S1 can bind to NRP1 through the canonical CendR mechanism. This interaction enhances infection by SARS-CoV-2 in cell culture. NRP1 thus serves as a host factor for SARS-CoV-2 infection, and provides a therapeutic target for COVID-19.


Assuntos
Infecções por Coronavirus , COVID-19
6.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.01.15.907873

RESUMO

Summary Respiratory viruses such as influenza A virus (IAV) and SARS-CoV-2 (Covid-19) cause pandemic infections where cytokine storm syndrome, lung inflammation and pneumonia lead to high mortality. Given the high social and economic cost of these viruses, there is an urgent need for a comprehensive understanding of how the airways defend against virus infection. Viruses entering cells by endocytosis are killed when delivered to lysosomes for degradation. Lysosome delivery is facilitated by non-canonical autophagy pathways that conjugate LC3 to endo-lysosome compartments to enhance lysosome fusion. Here we use mice lacking the WD and linker domains of ATG16L1 to demonstrate that non-canonical autophagy protects mice from lethal IAV infection of the airways. Mice with systemic loss of non-canonical autophagy are exquisitely sensitive to low-pathogenicity murine-adapted IAV where extensive viral replication throughout the lungs, coupled with cytokine amplification mediated by plasmacytoid dendritic cells, leads to fulminant pneumonia, lung inflammation and high mortality. IAV infection was controlled within epithelial barriers where non-canonical autophagy slowed fusion of IAV with endosomes and reduced activation of interferon signalling. This was consistent with conditional mouse models and ex vivo analysis showing that protection against IAV infection of lung was independent of phagocytes and other leukocytes. This establishes non-canonical autophagy pathways in airway epithelial cells as a novel innate defence mechanism that can restrict IAV infection and lethal inflammation at respiratory surfaces.


Assuntos
Crise Tireóidea , Pneumonia , COVID-19 , Degeneração Hepatolenticular , Influenza Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA